Introduction

- Glyphosate (N-(phosphonomethyl)glycine) is arguably the most important herbicide ever discovered and is the most widely used herbicide in the world with U.S. of 185 million pounds in 2002.
- Its mode of action as a herbicide is via inhibition of synthesis of aromatic amino acids in plants.
- Main breakdown product is (aminomethyl)phosphonic acid (AMPA).
- Structure similar to many small organic acids in plants.
- Strong chelator of divalent metal cations.
- Charged molecules in biological matrices (e.g. glycine).
- Strong chelator of divalent metal cations.

Analysis

- LC: Agilent binary 1260 Infinity LC pump and autosampler injector
- MS: AB Sciex Triple Quad 5500 LC-MS/MS
- Column: Obelisc N column (100mm x 2.1mm x 5 µm, SILIC Technologies)
- Quantitation in urine done using standard addition with IS of 12C-glyphosate with spike concentrations at 0.2, 1, and 2 µg
- Quantitation in tap water done using stable isotope dilution method using peak area ratios.

Results from Public Testing

- Glyphosate residues were observed in 93% of urine samples in voluntary public testing in the U.S. general population; this is higher than the frequency observed in Europe using GC-MS (43.9%).
- Tap water obtained was free of glyphosate residues as expected; exposure is likely due to dietary intake or environmental exposure.

Future Directions

- Develop method for AMPA in urine.
- Develop direct LC-MS/MS method not requiring standard addition.
- Develop method for glyphosate and AMPA in other biological matrices such as serum and breast milk.

References

7. UC Berkeley Joint Medical Program, Berkeley, CA. Results obtained for different regions of the U.S.