Project Bibliography

AAPCO, 2005

Association of American Pesticide Control Operators,” 2005 Pesticide Drift Enforcement Survey,”  2005.


Reports on the results from 2002 and 2003 farmer surveys, including on pesticide drift damage.  FULL TEXT

Abbott, 2017

Chuck Abbott, “Arkansas Task Force Aims for Long-Term Recommendations on Use of Dicamba,” The Fern, August 9, 2017.


Arkansas has appointed a 21-member task force to help identify solutions for the dicamba drift damage problem, with 900 complaints received this year so far.  FULL TEXT

Abbott, 2017

Chuck Abbott, “Dicamba is ‘tremendous success,’ says Monsanto; EPA mulls rule change,” FERN’s AG Insider, August 31, 2017.


Monsanto claims they will have enough dicamba-resistant seed available for half the U.S. soybean acreage, and chief technology officer Robb Fraley described dicamba as a “tremendous success” for most farmers.  EPA, however, is considering changes ahead of the 2018 season. “We don’t consider this to be normal growing pains for a new technology,” says an EPA official who oversees herbicide regulations.  Monsanto again claims the key is “strict adherence to instructions.” FULL TEXT

Acquavella et al., 2004

Acquavella JF, Alexander BH, Mandel JS, Gustin C, Baker B, Chapman P, Bleeke M, “Glyphosate biomonitoring for farmers and their families: results from the Farm Family Exposure Study.” Environmental Health Perspectives, 2004, 112:3.

ABSTRACT: Glyphosate is the active ingredient in Roundup agricultural herbicides and other herbicide formulations that are widely used for agricultural, forestry, and residential weed control. As part of the Farm Family Exposure Study, we evaluated urinary glyphosate concentrations for 48 farmers, their spouses, and their 79 children (4-18 years of age). We evaluated 24-hr composite urine samples for each family member the day before, the day of, and for 3 days after a glyphosate application. Sixty percent of farmers had detectable levels of glyphosate in their urine on the day of application. The geometric mean (GM) concentration was 3 ppb, the maximum value was 233 ppb, and the highest estimated systemic dose was 0.004 mg/kg. Farmers who did not use rubber gloves had higher GM urinary concentrations than did other farmers (10 ppb vs. 2.0 ppb). For spouses, 4% had detectable levels in their urine on the day of application. Their maximum value was 3 ppb. For children, 12% had detectable glyphosate in their urine on the day of application, with a maximum concentration of 29 ppb. All but one of the children with detectable concentrations had helped with the application or were present during herbicide mixing, loading, or application. None of the systemic doses estimated in this study approached the U.S. Environmental Protection Agency reference dose for glyphosate of 2 mg/kg/day. Nonetheless, it is advisable to minimize exposure to pesticides, and this study did identify specific practices that could be modified to reduce the potential for exposure.  FULL TEXT

Adams et al., 2016

Adams, A, Friesen, M, Olson, A, Gerona, R. “Biomonitoring of glyphosate across the United States in urine and tap water using high-fidelity LC-MS/MS method,” 2016. Poster presentation, access at:

Agopian et al, 2012

Agopian AJ, Lupo PJ, Canfield MA, Langlois PH, “Case-control study of maternal residential atrazine exposure and male genital malformations,” American Journal of Medical Genetics Part A, 2012, 161A:5, doi: 10.1002/ajmg.a.35815.

ABSTRACT: Exposure to endocrine disrupting chemicals has been associated with risk for male genital malformations. However, residential prenatal exposure to atrazine, an endocrine disrupting pesticide, has not been evaluated. We obtained data from the Texas Birth Defects Registry for 16,433 cases with isolated male genital malformations and randomly selected, population-based controls delivered during 1999-2008. County-level estimates of atrazine exposure from the United States Geological Survey were linked to all subjects. We evaluated the relationship between estimated maternal residential atrazine exposure and risk for male genital malformations in offspring. Separate unconditional logistic regression analyses were conducted for hypospadias, cryptorchidism, and small penis. We observed modest, but consistent, associations between medium-low and/or medium levels of estimated periconceptional maternal residential atrazine exposure and every male genital malformation category evaluated (e.g., adjusted odds ratio for medium compared to low atrazine levels and all male genital malformations: 1.2, 95% confidence interval: 1.1-1.3). Previous literature from animal and epidemiological studies supports our findings. Our results provide further evidence of a suspected teratogenic role of atrazine.

Agopian et al., 2013

A.J. Agopian, PhD, Yi Cai, MS, Peter H. Langlois, PhD, Mark A. Canfield, PhD, and Philip J. Lupo, PhD, “Maternal Residential Atrazine Exposure and Risk for Choanal Atresia and Stenosis in Offspring,” Journal of Pediatrics 2013, 162:3, DOI: 10.1016/j.jpeds.2012.08.012


OBJECTIVE: To assess the relationship between estimated residential maternal exposure to atrazine during pregnancy and the risk for choanal atresia or stenosis in offspring.

STUDY DESIGN: Data for 280 nonsyndromic cases and randomly selected, population-based controls delivered between 1999 and 2008 were obtained from the Texas Birth Defects Registry. County-level estimates of atrazine levels obtained from the US Geological Survey were assigned to cases and controls based on maternal county of residence at delivery. Unconditional logistic regression was used to assess the relationship between maternal residential atrazine exposure and the risk for choanal atresia or stenosis in offspring.

RESULTS: Compared with offspring of mothers with low levels of estimated residential atrazine exposure, those with high levels had nearly a 2-fold increase in risk for choanal atresia or stenosis (aOR, 1.79; 95% CI, 1.17-2.74). A significant linear trend was also observed with increasing levels of atrazine exposure (adjusted P = .002).

CONCLUSION: A link between maternal exposure to endocrine disruptors, such as atrazine, and the risk of choanal atresia is plausible based on previous findings. Our results lend further support to this hypothesis.  FULL TEXT

Alvarez-Moya et al., 2014

Carlos Alvarez-Moya, Mónica Reynoso Silva, Carlos Valdez Ramírez, David Gómez Gallardo, Rafael León Sánchez, Alejandro Canales Aguirre, Alfredo Feria Velasco, “Comparison of the in vivo and in vitro genotoxicity of glyphosate isopropylamine salt in three different organisms,” Genetics and Molecular Biology, 2014, 37:1, DOI: 10.1590/S1415-47572014000100016


There is considerable controversy with regard to the genotoxicity of glyphosate, with some reports stating that this compound is non-toxic for fish, birds and mammals. In this work, we used the comet assay to examine the genotoxicity of glyphosate isopropylamine (0.7, 7, 70 and 700 µM) in human lymphocytes, erythrocytes of Oreochromis niloticus and staminal nuclei of Tradescantia (4430) in vitro and in vivo. Cells, nuclei and fish that had and had not been exposed to 5 mM N-nitrosodiethylamine (NDEA) were used as positive and negative controls, respectively. Significant (p < 0.01) genetic damage was observed in vivo and in vitro in all cell types and organisms tested. Human lymphocytes and Tradescantia hairs showed lower genetic damage in vivo compared to in vitro, possibly because of efficient metabolization of the herbicide. In O. niloticus erythrocytes, significant (p < 0.001) genotoxicity was observed at > 7 µM, whereas in vitro, glyphosphate was genotoxic in human lymphocytes and Tradescantia hairs at > 0.7 µM. These results indicate that glyphosate is genotoxic in the cells and organisms studied at concentrations of 0.7-7 µM. FULL TEXT


American Soybean Association, 2017

American Soybean Association, ” ASA Steps up Urgency in Search for Answers on Dicamba Damage,” ASA News Release,  September 25, 2017.


This American Soybean Association (ASA) news release addresses dicamba drift damage, now an issue in 21 of the 30 soybean producing states, and reiterates their support of new formulations since “farmers need and want new technologies to help fight resistant weeds” but call out the “need to ensure that these products can be used by farmers…safely.”  Ron Moore, ASA president and farmer in dicamba-drift affected Illinois is extensively quoted and cites the ASA’s support for independent research at university ag departments in the affected states, and calls for “additional education, applications restrictions, or other actions” to address root causes of the drift problem.  While the problem is mainly stemming from soybeans, Moore recognizes the “good neighbor aspect…ASA has a duty to ensure that we are successfully coexisting with other crops.”  FULL TEXT

Antoniou et al., 2012

M Antoniou, MEM Habib,  CV Howard, RC Jennings, C Leifert, RO Nodari, CJ Robinson and J Fagan, “Teratogenic Effects of Glyphosate-Based Herbicides: Divergence of Regulatory Decisions from Scientific Evidence,” Environmental and Analytical Toxicology, S:4, 2012, DOI: 10.4172/2161-0525.S4-006.


The publication of a study in 2010, showing that a glyphosate herbicide formulation and glyphosate alone caused malformations in the embryos of Xenopus laevis and chickens through disruption of the retinoic acid signalling pathway, caused scientific and regulatory controversy. Debate centred on the effects of the production and consumption of genetically modified Roundup Ready® soy, which is engineered to tolerate applications of glyphosate herbicide. The study, along with others indicating teratogenic and reproductive effects from glyphosate herbicide exposure, was rebutted by the German Federal Office for Consumer Protection and Food Safety, BVL, as well as in industry-sponsored papers. These rebuttals relied partly on unpublished industry-sponsored studies commissioned for regulatory purposes, which, it was claimed, showed that glyphosate is not a teratogen or reproductive toxin.

However, examination of the German authorities’ draft assessment report on the industry studies, which underlies glyphosate’s EU authorisation, revealed further evidence of glyphosate’s teratogenicity. Many of the malformations found were of the type defined in the scientific literature as associated with retinoic acid teratogenesis. Nevertheless, the German and EU authorities minimized these findings in their assessment and set a potentially unsafe acceptable daily intake (ADI) level for glyphosate. This paper reviews the evidence on the teratogenicity and reproductive toxicity of glyphosate herbicides and concludes that a new and transparent risk assessment needs to be conducted. The new risk assessment must take into account all the data on the toxicity of glyphosate and its commercial formulations, including data generated by independent scientists and published in the peer-reviewed scientific literature, as well as the industry-sponsored studies.  FULL TEXT