Bellinger, 2012

David C. Bellinger, “A Strategy for Comparing the Contributions of Environmental Chemicals and Other Risk Factors to Neurodevelopment of Children,” Environmental Health Perspectives, 2012, 120:4, DOI: 10.1289/ehp.1104170


BACKGROUND: The impact of environmental chemicals on children’s neurodevelopment is sometimes dismissed as unimportant because the magnitude of  the impairments are considered to be clinically insignificant. Such a judgment reflects a failure to distinguish between individual and population risk. The population impact of a risk factor depends on both its effect size and its distribution (or incidence/prevalence).

OBJECTIVE:  The objective was to develop a strategy for taking into account the distribution (or incidence/prevalence) of a risk factor, as well as its effect size, in order to estimate its population impact on neurodevelopment of children.

METHODS: The total numbers of Full-Scale IQ points lost among U.S. children 0–5 years of age were estimated for chemicals (methylmercury, organophosphate pesticides, lead) and a variety of medical conditions and events (e.g., preterm birth, traumatic brain injury, brain tumors, congenital
heart disease).

DISCUSSION: Although the data required for the analysis were available for only three environmental chemicals (methylmercury, organophosphate pesticides, lead), the results suggest that their contributions to neurodevelopmental morbidity are substantial, exceeding those of many nonchemical risk factors.

CONCLUSION: A method for comparing the relative contributions of different risk factors provides a rational basis for establishing priorities for reducing neurodevelopmental morbidity in children. FULL TEXT

Bouchard et al., 2011

Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, Trujillo C, Johnson C, Bradman A, Barr DB, Eskenazi B., “Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children.,” Environmental Health Perspectives, 2011, 119:8, DOI: 10.1289/ehp.1003185.

CONTEXT: Organophosphate (OP) pesticides are neurotoxic at high doses. Few studies have examined whether chronic exposure at lower levels could adversely affect children’s cognitive development.

OBJECTIVE: We examined associations between prenatal and postnatal exposure to OP pesticides and cognitive abilities in school-age children.

METHODS: We conducted a birth cohort study (Center for the Health Assessment of Mothers and Children of Salinas study) among predominantly Latino farmworker families from an agricultural community in California. We assessed exposure to OP pesticides by measuring dialkyl phosphate (DAP) metabolites in urine collected during pregnancy and from children at 6 months and 1, 2, 3.5, and 5 years of age. We administered the Wechsler Intelligence Scale for Children, 4th edition, to 329 children 7 years of age. Analyses were adjusted for maternal education and intelligence, Home Observation for Measurement of the Environment score, and language of cognitive assessment.

RESULTS: Urinary DAP concentrations measured during the first and second half of pregnancy had similar relations to cognitive scores, so we used the average of concentrations measured during pregnancy in further analyses. Averaged maternal DAP concentrations were associated with poorer scores for Working Memory, Processing Speed, Verbal Comprehension, Perceptual Reasoning, and Full-Scale intelligence quotient (IQ). Children in the highest quintile of maternal DAP concentrations had an average deficit of 7.0 IQ points compared with those in the lowest quintile. However, children’s urinary DAP concentrations were not consistently associated with cognitive scores.

CONCLUSIONS: Prenatal but not postnatal urinary DAP concentrations were associated with poorer intellectual development in 7-year-old children. Maternal urinary DAP concentrations in the present study were higher but nonetheless within the range of levels measured in the general U.S. population. FULL TEXT

Cabello et al., 2001

Gertrudis Cabello, Mario Valenzuela, Arnaldo Vilaxa, Viviana Durán, Isolde Rudolph, Nicolas Hrepic, and Gloria Calaf, “A Rat Mammary Tumor Model Induced by the Organophosphorous Pesticides Parathion and Malathion, Possibly through Acetylcholinesterase Inhibition,” Environmental Health Perspectives, 2001, 109:5.


Environmental chemicals may be involved in the etiology of breast cancers. Many studies have addressed the association between cancer in humans and agricultural pesticide exposure. Organophosphorous pesticides have been used extensively to control mosquito plagues. Parathion and malathion are organophosphorous pesticides extensively used to control a wide range of sucking and chewing pests of field crops, fruits, and vegetables. They have many structural similarities with naturally occurring compounds, and their primary target of action in insects is the nervous system; they inhibit the release of the enzyme acetylcholinesterase at the synaptic junction. Eserine, parathion, and malathion are cholinesterase inhibitors responsible for the hydrolysis of body choline esters, including acetylcholine at cholinergic synapses. Atropine, a parasympatholytic alkaloid, is used as an antidote to acetylcholinesterase inhibitors. The aim of this study was to examine whether pesticides were able to induce malignant transformation of the rat mammary gland and to determine whether alterations induced by these substances increase the cholinergic activation influencing such transformation. These results showed that eserine, parathion, and malathion increased cell proliferation of terminal end buds of the 44-day-old mammary gland of rats, followed by formation of 8.6, 14.3, and 24.3% of mammary carcinomas, respectively, after about 28 months. At the same time, acetylcholinesterase activity decreased in the serum of these animals from 9.78 +/- 0.78 U/mL in the control animals to 3.05 +/- 0.06 U/mL; 2.57 +/- 0.15 U/mL; and 3.88 +/- 0.44 U/mL in the eserine-, parathion-, and malathion-treated groups, respectively. However, atropine alone induced a significant (p < 0.05) decrease in the acetylcholinesterase activity from the control value of 9.78 +/- 0.78 to 4.38 +/- 0.10 for atropine alone, to 1.32 +/- 0.06 for atropine in combination with eserine, and 2.39 +/- 0.29 for atropine with malathion, and there was no mammary tumor formation. These results indicate that organophosphorous pesticides induce changes in the epithelium of mammary gland influencing the process of carcinogenesis, and such alterations occur at the level of nervous system by increasing the cholinergic stimulation. FULL TEXT

De Roos et al., 2003

A J De Roos, S Zahm, K Cantor, D Weisenburger, F Holmes, L Burmeister, and A Blair, “Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men,” Occupational and Environmental Medicine, 2003, 60:9, DOI: 10.1136/oem.60.9.e1


METHODS: During the 1980s, the National Cancer Institute conducted three case-control studies of NHL in the midwestern United States. These pooled data were used to examine pesticide exposures in farming as risk factors for NHL in men. The large sample size (n = 3417) allowed analysis of 47 pesticides simultaneously, controlling for potential confounding by other pesticides in the model, and adjusting the estimates based on a prespecified variance to make them more stable.

RESULTS: Reported use of several individual pesticides was associated with increased NHL incidence, including organophosphate insecticides coumaphos, diazinon, and fonofos, insecticides chlordane, dieldrin, and copper acetoarsenite, and herbicides atrazine, glyphosate, and sodium chlorate. A subanalysis of these “potentially carcinogenic” pesticides suggested a positive trend of risk with exposure to increasing numbers.

CONCLUSION: Consideration of multiple exposures is important in accurately estimating specific effects and in evaluating realistic exposure scenarios.  FULL TEXT

Eskenazi et al., 2004

Brenda Eskenazi, Kim Harley, Asa Bradman, Erin Weltzien, Nicholas P. Jewell, Dana B. Barr, Clement E. Furlong, and Nina T. Holland, “Association of in Utero Organophosphate Pesticide Exposure and Fetal Growth and Length of Gestation in an Agricultural Population,” Environmental Health Perspecitives, 112:10, 2004, DOI: 10.1289/ehp.6789


Although pesticide use is widespread, little is known about potential adverse health effects of in utero exposure. We investigated the effects of  organophosphate pesticide exposure during pregnancy on fetal growth and gestational duration in a cohort of low-income, Latina women living in an agricultural community in the Salinas Valley, California. We measured nonspecific metabolites of organophosphate pesticides (dimethyl and diethyl phosphates) and metabolites specific to malathion (malathion dicarboxylic acid), chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphoro-thioate], and parathion (4-nitrophenol) in maternal urine collected twice during pregnancy. We also measured levels of cholinesterase in whole blood and butyryl cholinesterase in plasma in maternal and umbilical cord blood. We failed to demonstrate an adverse relationship between fetal growth and any measure of in utero organophosphate pesticide exposure. In fact, we found increases in body length and head circumference associated with some exposure measures.
However, we did find decreases in gestational duration associated with two measures of in utero pesticide exposure: urinary dimethyl phosphate metabolites [βadjusted = –0.41 weeks per log10 unit increase; 95% confidence interval (CI), –0.75––0.02; p = 0.02], which reflect exposure to dimethyl organophosphate compounds such as malathion, and umbilical cord cholinesterase (βadjusted = 0.34 weeks per unit increase; 95% CI, 0.13–0.55; p = 0.001). Shortened gestational duration was most clearly related to increasing exposure levels in the latter part of pregnancy. These associations with gestational age may be biologically plausible given that organophosphate pesticides depress cholinesterase and acetylcholine stimulates contraction of the uterus. However, despite these observed associations, the rate of preterm delivery in this population (6.4%) was lower than in a U.S. reference population.   FULL TEXT

Koureas et al., 2011

Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C., “Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes,” Toxicology Letters,  2012, 210:2, DOI: 10.1016/j.toxlet.2011.10.007.


For the appropriate protection of human health it is necessary to accurately estimate the health effects of human exposure to toxic compounds. In the present  review, epidemiological studies on the health effects of human exposure to organophosphorus  (OP) and pyrethroid (PYR) insecticides have been critically assessed. This review is focused on studies where the exposure assessment was based on quantification of specific biomarkers in urine or plasma. The 49 studies reviewed used different epidemiological approaches and analytical methods as well as different exposure assessment methodologies. With regard to OP pesticides, the studies reviewed suggested negative effects of prenatal exposure to these pesticides on neurodevelopment and male reproduction. Neurologic effects on adults, DNA damage and adverse birth outcomes were also associated with exposure to OP pesticides. With regard to exposure to PYR pesticides, there are currently few studies investigating the adverse health outcomes due to these pesticides. The effects studied in relation to PYR exposure were mainly male reproductive effects (sperm quality, sperm DNA damage and reproductive hormone disorders). Studies’ findings provided evidence to support the hypothesis that PYR exposure is adversely associated with effects on the male reproductive system. The validity of these epidemiological studies is strongly enhanced by exposure assessment based on biomarker quantification. However, for valid and reliable results and conclusions, attention should also be focused on the validity of the analytical methods used, study designs and the measured toxicants characteristics.

McDuffie et al., 2001

Helen H. McDuffie, Punam Pahwa, John R. McLaughlin, John J. Spinelli, Shirley Fincham, James A. Dosman, Diane Robson, Leo F. Skinnider and Norman W. Choi, “Non-Hodgkin’s Lymphoma and Specific Pesticide Exposures in Men: Cross-Canada Study of Pesticides and Health,” Cancer Epidemiology, Biomarkers, & Prevention, 2001, 10.


Our objective in the study was to investigate the putative associations of specific pesticides with non-Hodgkin’s Lymphoma [NHL; International Classification of Diseases, version 9 (ICD-9) 200, 202]. We conducted a Canadian multicenter population-based incident, case (n = 517)-control (n = 1506) study among men in a diversity of occupations using an initial postal questionnaire followed by a telephone interview for those reporting pesticide exposure of 10 h/year or more, and a 15% random sample of the remainder. Adjusted odds ratios (ORs) were computed using conditional logistic regression stratified by the matching variables of age and province of residence, and subsequently adjusted for statistically significant medical variables (history of measles, mumps, cancer, allergy desensitization treatment, and a positive history of cancer in first-degree relatives). We found that among major chemical classes of herbicides, the risk of NHL was statistically significantly increased by exposure to phenoxyherbicides [OR, 1.38; 95% confidence interval (CI), 1.06–1.81] and to dicamba (OR, 1.88; 95% CI, 1.32–2.68). Exposure to carbamate (OR, 1.92; 95% CI, 1.22–3.04) and to organophosphorus insecticides (OR, 1.73; 95% CI, 1.27–2.36), amide fungicides, and the fumigant carbon tetrachloride (OR, 2.42; 95% CI, 1.19–5.14) statistically significantly increased risk. Among individual compounds, in multivariate analyses, the risk of NHL was statistically significantly increased by exposure to the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D; OR, 1.32; 95% CI, 1.01–1.73), mecoprop (OR, 2.33; 95% CI, 1.58–3.44), and dicamba (OR, 1.68; 95% CI, 1.00–2.81); to the insecticides malathion (OR, 1.83; 95% CI, 1.31–2.55), 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT), carbaryl (OR, 2.11; 95% CI, 1.21–3.69), aldrin, and lindane; and to the fungicides captan and sulfur compounds. In additional multivariate models, which included exposure to other major chemical classes or individual pesticides, personal antecedent cancer, a history of cancer among first-degree relatives, and exposure to mixtures containing dicamba (OR, 1.96; 95% CI, 1.40–2.75) or to mecoprop (OR, 2.22; 95% CI, 1.49–3.29) and to aldrin (OR, 3.42; 95% CI, 1.18–9.95) were significant independent predictors of an increased risk for NHL, whereas a personal history of measles and of allergy desensitization treatments lowered the risk. We concluded that NHL was associated with specific pesticides after adjustment for other independent predictors. FULL TEXT

Nowell et al., 2018

Nowell Lisa H., Moran Patrick W., Schmidt Travis S., Norman Julia E., Nakagaki Naomi, Shoda Megan E., Mahler Barbara J., Van Metre Peter C., Stone Wesley W., Sandstrom Mark W., Hladik Michelle L., “Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams,” Science of the Total Environment, 613-614, 2018, DOI: 10.1016/j.scitotenv.2017.06.156


Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most complex pesticide mixtures yet reported in discrete water samples in the U.S. and, using multiple lines of evidence, predicts that pesticides were potentially toxic to nontarget aquatic life in about half of the sampled streams.  FULL TEXT

Ranjbar et al., 2015

Mahsa Ranjbar, Michael A. Rotondi, Chris I. Ardern, and Jennifer L. Kuk, “The Influence of Urinary Concentrations of Organophosphate Metabolites on the Relationship between BMI and Cardiometabolic Health Risk,” Journal of Obesity, 2015, DOI: 10.1155/2015/687914


The objective was to determine whether detectable levels of OP metabolites influence the relationship between BMI and cardiometabolic health. This cross-sectional study was conducted using 2227 adults from the 1999–2008 NHANES datasets.  Urinary concentrations of six dialkyl phosphate metabolites were dichotomized to above and below the detection limit. Weighted multiple regression analysis was performed adjusting for confounding variables. Independent of BMI, individuals with detectable metabolites had higher diastolic blood pressure (for dimethylphosphate, diethylphosphate, and diethyldithiophosphate; 𝑃 < 0.05), lower HDL (for diethyldithiophosphate; 𝑃 = 0.02), and higher triglyceride (for dimethyldithiophosphate; 𝑃 = 0.05) than those below detection. Contrarily, those with detectable dimethylthiophosphate had better LDL, HDL, and total cholesterol, independent of BMI. Individuals at a higher BMI range who had detectable diethylphosphate (interaction: 𝑃 = 0.03) and diethylthiophosphate (interaction: 𝑃 = 0.02) exhibited lower HDL, while little difference existed between OP metabolite detection statuses at lower BMIs.  Similarly, individuals with high BMIs and detectable diethylphosphate had higher triglyceride than those without detectable levels, while minimal differences between diethylphosphate detection statuses were observed at lower BMIs (interaction: 𝑃 = 0.02). Thus, cardiometabolic health outcome differs depending on the specific OP metabolite being examined, with higher BMIs amplifying
health risk.  FULL TEXT

Waddell et al., 2001

Waddell BL, Zahm SH, Baris D, Weisenburger DD, Holmes F, Burmeister LF, Cantor KP, Blair A., “Agricultural use of organophosphate pesticides and the risk of non-Hodgkin’s lymphoma among male farmers (United States).,” Cancer Causes Control, 2001, 12:6.


OBJECTIVE: Data from three population-based case-control studies conducted in Kansas, Nebraska, Iowa, and Minnesota were pooled to evaluate the relationship between the use of organophosphate pesticides and non-Hodgkin’s lymphoma (NHL) among white male farmers.

METHODS: The data set included 748 cases of non-Hodgkin’s lymphoma and 2236 population-based controls. Telephone or in-person interviews were utilized to obtain information on the use of pesticides. Odds ratios (OR) adjusted for age, state of residence, and respondent status, as well as other pesticide use where appropriate, were estimated by logistic regression.

RESULTS: Use of organophosphate pesticides was associated with a statistically significant 50% increased risk of NHL, but direct interviews showed a significantly lower risk (OR = 1.2) than proxy interviews (OR = 3.0). Among direct interviews the risk of small lymphocytic lymphoma increased with diazinon use (OR = 2.8), after adjustment for other pesticide exposures.

CONCLUSIONS: Although we found associations between the risk of NHL and several groupings and specific organophosphate pesticides, larger risks from proxy respondents complicate interpretation. Associations, however, between reported use of diazinon and NHL, particularly diffuse and small lymphocytic lymphoma, among subjects providing direct interviews are not easily discounted.