Male Reproductive Impacts

Anway et al., 2005

Anway, Matthew D., Cupp, Andrea S., Uzumcu, Mehmet, and Skinner, Michael K., “Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility,”  Science, 2005, 308:5727,  DOI: 10.1126/SCIENCE.1108190.

ABSTRACT:

Transgenerational effects of environmental toxins require either a chromosomal or epigenetic alteration in the germ line. Transient exposure of a gestating female rat during the period of gonadal sex determination to the endocrine disruptors vinclozolin (an antiandrogenic compound) or methoxychlor (an estrogenic compound) induced an adult phenotype in the F1 generation of decreased spermatogenic capacity (cell number and viability) and increased incidence of male infertility. These effects were transferred through the male germ line to nearly all males of all subsequent generations examined (that is, F1 to F4). The effects on reproduction correlate with altered DNA methylation patterns in the germ line. The ability of an environmental factor (for example, endocrine disruptor) to reprogram the germ line and to promote a transgenerational disease state has significant implications for evolutionary biology and disease etiology.  FULL TEXT

Benachour et al., 2007

N. Benachour, H. Sipahutar, S. Moslemi, C. Gasnier, C. Travert, G. E. Séralini, “Time- and Dose-Dependent Effects of Roundup on Human Embryonic and Placental Cells,” Archives of Environmental Contamination and Toxicology, 53:1, July 2007, DOI: doi.org/10.1007/s00244-006-0154-8

ABSTRACT:

Roundup® is the major herbicide used worldwide, in particular on genetically modified plants that have been designed to tolerate it. We have tested the toxicity and endocrine disruption potential of Roundup (Bioforce®) on human embryonic 293 and placental-derived JEG3 cells, but also on normal human placenta and equine testis. The cell lines have proven to be suitable to estimate hormonal activity and toxicity of pollutants. The median lethal dose (LD50) of Roundup with embryonic cells is 0.3% within 1 h in serum-free medium, and it decreases to reach 0.06% (containing among other compounds 1.27 mM glyphosate) after 72 h in the presence of serum. In these conditions, the embryonic cells appear to be 2–4 times more sensitive than the placental ones. In all instances, Roundup (generally used in agriculture at 1–2%, i.e., with 21–42 mM glyphosate) is more efficient than its active ingredient, glyphosate, suggesting a synergistic effect provoked by the adjuvants present in Roundup. We demonstrated that serum-free cultures, even on a short-term basis (1 h), reveal the xenobiotic impacts that are visible 1–2 days later in serum. We also document at lower non-overtly toxic doses, from 0.01% (with 210 μM glyphosate) in 24 h, that Roundup is an aromatase disruptor. The direct inhibition is temperature-dependent and is confirmed in different tissues and species (cell lines from placenta or embryonic kidney, equine testicular, or human fresh placental extracts). Furthermore, glyphosate acts directly as a partial inactivator on microsomal aromatase, independently of its acidity, and in a dose-dependent manner. The cytotoxic, and potentially endocrine-disrupting effects of Roundup are thus amplified with time. Taken together, these data suggest that Roundup exposure may affect human reproduction and fetal development in case of contamination. Chemical mixtures in formulations appear to be underestimated regarding their toxic or hormonal impact.

 

Clair et al., 2012

Clair E, Mesnage R, Travert C, Séralini GÉ, “A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels,” Toxicology In Vitro, 2012, 26:2, doi: 10.1016/j.tiv.2011.12.009.

ABSTRACT: The major herbicide used worldwide, Roundup, is a glyphosate-based pesticide with adjuvants. Glyphosate, its active ingredient in plants and its main metabolite (AMPA) are among the first contaminants of surface waters. Roundup is being used increasingly in particular on genetically modified plants grown for food and feed that contain its residues. Here we tested glyphosate and its formulation on mature rat fresh testicular cells from 1 to 10000ppm, thus from the range in some human urine and in environment to agricultural levels. We show that from 1 to 48h of Roundup exposure Leydig cells are damaged. Within 24-48h this formulation is also toxic on the other cells, mainly by necrosis, by contrast to glyphosate alone which is essentially toxic on Sertoli cells. Later, it also induces apoptosis at higher doses in germ cells and in Sertoli/germ cells co-cultures. At lower non toxic concentrations of Roundup and glyphosate (1ppm), the main endocrine disruption is a testosterone decrease by 35%. The pesticide has thus an endocrine impact at very low environmental doses, but only a high contamination appears to provoke an acute rat testicular toxicity. This does not anticipate the chronic toxicity which is insufficiently tested, and only with glyphosate in regulatory tests.

Colborn and Carroll, 2007

Colborn, Theo, Lynn Carroll,  “Pesticides, Sexual Development, Reproduction,and Fertility: Current Perspective and Future Direction,” Human and Ecological Risk Assessment, 2007, 13:5.

ABSTRACT: Improvements in chemical analytical technology and non-invasive sampling protocols have made it easier to detect pesticides and their metabolites at very low concentrations in human tissues. Monitoring has revealed that pesticides penetrate both maternal and paternal reproductive tissues and organs, thus providing a pathway for initiating harm to their offspring starting before fertilization throughout gestation and lactation. This article explores the literature that addresses the parental pathway of exposure to pesticides. We use DDT/DDE as a model for chemicals that oftentimes upon exposure have no apparent, immediate health impacts, or cause no obvious birth defects, and are seldom linked with cancer. Their health effects are overlooked because they are invisible and not life threatening—but might have significant health, social, and economic impacts at the individual and population levels. The purpose of this article is to demonstrate the necessity to develop new approaches for determining the safety of pesticides and the need for innovative regulatory policy to protect human and environmental health.

Crews et al., 2007

David Crews, Andrea C. Gore, Timothy S. Hsu, Nygerma L. Dangleben, Michael Spinetta, Timothy Schallert, Matthew D. Anway, and Michael K. Skinner, “Transgenerational epigenetic imprints on mate preference,” PNAS, 2007, 104:14, DOI: 10.1073/PNAS.0610410104.

ABSTRACT:

Environmental contamination by endocrine-disrupting chemicals (EDC) can have epigenetic effects (by DNA methylation) on the germ line and promote disease across subsequent generations. In natural populations, both sexes may encounter affected as well as unaffected individuals during the breeding season, and any diminution in attractiveness could compromise reproductive success. Here we examine mate preference in male and female rats whose progenitors had been treated with the antiandrogenic fungicide vinclozolin. This effect is sex-specific, and we demonstrate that females three generations removed from the exposure discriminate and prefer males who do not have a history of exposure, whereas similarly epigenetically imprinted males do not exhibit such a preference. The observations suggest that the consequences of EDCs are not just transgenerational but can be ‘‘transpopulational’’, because in many mammalian species, males are the dispersing sex. This result indicates that epigenetic transgenerational inheritance of EDC action represents an unappreciated force in sexual selection. Our observations provide direct experimental evidence for a role of epigenetics as a determinant factor in evolution.  FULL TEXT

English et al., 2012

René Glynnis English, Melissa Perry, Mary M. Lee, Elaine Hoffman, Steven Delport, Mohamed Aqiel Dalvie, “Farm residence and reproductive health among boys in rural South Africa,” Environment International, 2012, 47, DOI: 10.1016/J.Envint.2012.06.006.

ABSTRACT:

Few studies have investigated reproductive health effects of contemporary agricultural pesticides in boys. To determine the association between pesticide exposure and reproductive health of boys. We conducted a cross-sectional study in rural South Africa of boys living on and off farms. The study included a questionnaire (demographics, general and reproductive health, phyto-estrogen intake, residential history, pesticide exposures, exposures during pregnancy); and a physical examination that included sexual maturity development ratings; testicular volume; height, weight, body mass index; and sex hormone concentrations. Among the 269 boys recruited into the study, 177 (65.8%) were categorized as farm (high pesticide exposures) and 98 (34.2%) as non-farm residents (lower pesticide exposures). Median ages of the two groups were 11.3 vs 12.0 years, respectively (p<0.05). After controlling for confounders that included socioeconomic status, farm boys were shorter (regression coefficient (RC)=-3.42 cm; 95% confidence interval (CI): -6.38 to -0.45 cm) and weighed less (RC=-2.26 kg; CI: -4.44 to -0.75 kg). The farm boys also had lower serum lutenizing hormone (RC=-0.28 IU/L; CI: -0.48 to -0.08 IU/L), but higher serum oestradiol (RC=8.07 pmol/L; CI: 2.34-13.81 pmol/L) and follicle stimulating hormone (RC=0.63 IU/L; CI: 0.19-1.08 U/L). Our study provides evidence that farm residence is associated with adverse growth and reproductive health of pubertal boys which may be due to environmental exposures to hormonally active contemporary agricultural pesticides.   FULL TEXT

Garry et al., 2003

Garry VF, Holland SE, Erickson LL, Burroughs BL, “Male reproductive hormones and thyroid function in pesticide applicators in the Red River Valley of Minnesota,” Journal of Toxicology and Environmental Health – Part A, 2003, 66:11.

ABSTRACT: In the present effort, 144 pesticide applicators and 49 urban control subjects who reported no chronic disease were studied. Applicators provided records of the season’s pesticides used by product, volumes, dates, and methods of application. Blood specimens for examination of hormone levels were obtained in summer and fall. In the herbicide-only applicator group, significant increases in testosterone levels in fall compared to summer and also elevated levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the fall were noted. With respect to fungicide use, in an earlier cross-sectional epidemiologic study, data demonstrated that historic fungicide use was associated with a significant alteration of the sex ratio of children borne to applicators. As before, among current study subjects it was noted that historic fungicide use was associated with increased numbers of girls being born. Lower mean total testosterone concentrations by quartile were also correlated with increased numbers of live-born female infants. A downward summer to fall seasonal shift in thyroid-stimulating hormone (TSH) concentrations occurred among applicators but not among controls. Farmers who had aerial application of fungicides to their land in the current season showed a significant shift in TSH values (from 1.75 to 1.11 mU/L). Subclinical hypothyroidism was noted in 5/144 applicators (TSH values >4.5 mU/L), but not in urban control subjects. Based on current and past studies, it was concluded that, in addition to pesticide exposure, individual susceptibility and perhaps economic factors may play a supporting role in the reported results.

Landrigan, 2018

Philip J. Landrigan, “Pesticides and Human Reproduction,” JAMA Internal Medicine, 2018, 178:1, DOI:10.1001/jamainternmed.2017.5092

SUMMARY:

Invited commentary by Managing Weeds for Healthy Kids science team member Dr. Landrigan reports that herbicide use has increased sharply, with glyphosate use up 250-fold from 1974 to 2014.  And, “measurable levels of multiple pesticides are found in the bodies of nearly all Americans…and pesticides are capable of causing a wide range of asymptomatic effects at levels of exposure too low to produce overt signs and symptoms.”  New theories suggest that long term exposure to pesticides cause this kind of subclinical toxicity.  Dr. Landrigan reviews the known linkages, including in utero chlorpyrifos exposure leading to neurodevelopmental deficits, and reproductive injury including adverse birth outcomes and birth defects. He recommends: “We need to overcome the strident objections of the pesticide manufacturing industry, recognize the hidden costs of deregulation, and strengthen requirements for both premarket testing of new pesticides, as well as postmarketing surveillance of exposed populations— exactly as we do for another class of potent, biologically active molecules—drugs.”  FULL TEXT

Lopes et al., 2014

Lopes FM, Varela Junior AS, Corcini CD, da Silva AC, Guazzelli VG, Tavares G, da Rosa CE, “Effect of glyphosate on the sperm quality of zebrafish Danio rerio,” Aquatic Toxicology, 2014, 155, DOI: 10.1016/j.aquatox.2014.07.006.

ABSTRACT

Glyphosate is a systemic, non-selective herbicide widely used in agriculture worldwide. It acts as an inhibitor of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase by interrupting the synthesis of essential aromatic amino acids. This pathway is not present in animals, although some studies have shown that the herbicide glyphosate can affect fish reproduction. In this study, the effect of glyphosate on sperm quality of the fish Danio rerio was investigated after 24 and 96 h of exposure at concentrations of 5mg/L and 10mg/L. The spermatic cell concentration, sperm motility and motility period were measured employing conventional microscopy. The mitochondrial functionality, membrane integrity and DNA integrity were measured by fluorescence microscopy using specific probes. No significant differences in sperm concentration were observed; however, sperm motility and the motility period were reduced after exposure to both glyphosate concentrations during both exposure periods. The mitochondrial functionality and membrane and DNA integrity were also reduced at the highest concentration during both exposure periods. The results showed that glyphosate can induce harmful effects on reproductive parameters in D. rerio and that this change would reduce the fertility rate of these animals.

Manfo et al., 2012

Manfo FP, Moundipa PF, Déchaud H, Tchana AN, Nantia EA, Zabot MT, Pugeat M, “Effect of agropesticides use on male reproductive function: a study on farmers in Djutitsa (Cameroon),” Environmental Toxicology, 2012, 27:7, DOI: 10.1002/tox.20656.

ABSTRACT:  This study aimed at investigating the effect of agropesticides on male reproductive function in farmers in Djutitsa (West Cameroon). To this end, 47 farmers in Djutitsa were asked questions on their health status and pesticide use in agriculture. Thereafter, their blood samples were collected for assessment of sex hormones including serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), androstenedione, testosterone, as well as sex hormone binding globulin (SHBG). Their serum triiodothyronine (T3) and thyroxine (T4) levels were also measured. Thirty seven men not exposed to agropesticides were recruited as control group. Fifty six pesticides containing 25 active substances were currently used by farmers enrolled in our study, and most of their symptoms were related to spread/use of these chemicals. Compared to the control group, there was no significant difference in FSH, LH, SHBG, estradiol, and thyroid hormones (T3 and T4) levels. Farmers had significantly lower serum testosterone (20.93 ± 1.03 nM vs. 24.32 ± 1.32 nM; P < 0.05) and higher androstenedione level (3.83 ± 0.20 nM vs. 2.80 ± 0.15 nM; P < 0.001). Their serum free testosterone as well as bioavailable testosterone were unchanged, while estradiol/testosterone and androstenedione/testosterone ratios were significantly increased (0.45 ± 0.03% vs. 0.33 ± 0.02%; P < 0.01 and 12.26 ± 3.64 vs 19.31 ± 6.82; P < 0.001, respectively). Our results suggest that male farmers of Djutitsa (West Cameroon) are exposed to agropesticides due to improper protective tool, and this exposure may impair their reproductive function through inhibition of testosterone synthesis; probably by inhibition of testicular 17β- hydroxysteroid dehydrogenase (17HSD3) and induction of aromatase (CYP19).